На нашем сайте мы используем cookie для сбора информации технического характера и обрабатываем IP-адрес вашего местоположения. Продолжая использовать этот сайт, вы даете согласие на использование файлов cookies. Здесь вы можете узнать, как мы используем эти данные.
Я согласен
"Зеленая тетрадь" ::: Тимофеев-Ресовский Н.В. - Истории, рассказанные им самим ::: Тимофеев-Ресовский Николай Владимирович ::: Воспоминания о ГУЛАГе :: База данных :: Авторы и тексты

Тимофеев-Ресовский Николай Владимирович

Авторы воспоминаний о ГУЛАГе
на сайт Музея
[на главную] [список] [неопубликованные] [поиск]
 
Тимофеев-Ресовский Н. В. Воспоминания : Истории, рассказанные им самим, с письмами, фотографиями  и документами / сост. и ред. Дубровина Н. - М. : Согласие, 2000. - 880 с. : 120 с. ил.

 << Предыдущий блок     Следующий блок >>
 
- 234 -

«Зеленая тетрадь»

 

В прошлый раз я постарался рассказать, как мы вошли в очень интересный круг людей, в основном физиков, отчасти физикохимиков, создававших тогда новую физическую картину мира и новую теоретическую физику. Тогда как раз, с конца 20-х годов, развивалась, в основном в боровском круге в Копенгагене, квантовая теория и объединение квантовой теории с теорией относительности, с общим принципом относительности. В 30-е годы стала интенсивно развиваться совершенно новая атомная, а потом ядерная физика экспериментально: были открыты, получили широкое распространение нейтроны, стали появляться новые и новые элементарные частицы. Одним словом, началась чрезвычайно оживленная эпоха в развитии физики.

Часто считают сейчас послевоенное время замечательным в развитии физики. Я с этим не очень согласен. Сейчас, собственно, развитие физического прикладничества. Сейчас переводятся на практику, так сказать,

 

- 235 -

различные достижения физики конца 20-х и 30-х годов, вплоть до начала 40-х. Тогда было, действительно, занимательное, интереснейшее время. Сейчас все это переводится в машинерию.

Целую эру мы пережили атомной физики. Что хорошего от нее осталось — пока еще рано говорить, потому что, ну, несколько там этих атомных электростанций да атомная станция по опреснению морской воды — это все пустячки, в конце концов. А ужасных вещей очень много, конечно: атомные бомбы, ядерные бомбы, водородные бомбы, которые частью экспериментально взрывались и испоганили довольно изрядно биосферу Земли. Теперь не взрываются больше, во всяком случае так видимо и ощутимо.

Потом началась космическая, или «косметическая», эра, в которой мы и сейчас пребываем. Тут научно еще меньше нового и неожиданного происходит пока. А к чему она приведет интересному — пока тоже трудно знать. Пожалуй, самое интересное, что, так сказать, вот эта «косметика» принесла с собой,— это американские и наши длительные, но довольно скучные эксперименты на этих орбитальных станциях, где сидели, значит, какие-то ожидающие повышения своих земных благ джентльмены до двух месяцев и больше и занимались разведением вошек и блошек. Ничего сверхъестественно интересного при этом обнаружено не было. К сожалению, и у американцев, и у наших почти не проводилось планомерных экспериментов, а, в общем, так, что придется делали, главным образом. И это опять-таки нельзя сравнивать с действительно великими научными делами, которые происходили в 20-30-е годы нашего века. Так что мне и моей группе, группе друзей, сотрудников, учеников, очень посчастливилось, что нам с конца 20-х и особенно в 30-е годы удалось, так сказать, попасть в науке как раз в самый интересный пока, пожалуй, в XX веке период развития естествознания.

Я очень надеюсь, что, во-первых, на философии так называемой и, во-вторых, на целом ряде гуманитарных дисциплин вот этот новый расцвет естествознания

 

- 236 -

XX века еще отзовется плодотворно. Несомненно, ряду гуманитарных дисциплин придется перестраиваться на новый манер для того, чтобы не оказаться совсем никому не нужными. Но я думаю, что это произойдет не так быстро, как происходили новые перестройки физической картины мира в естествознании. А более постепенно, по мере того, как целый ряд общеметодологических, а отчасти и философских принципов из современного естествознания, не физики, не биологии, а всего естествознания в целом, будут помаленьку сперва популяризироваться в достаточной мере, чтоб быть удобоваримыми и понятными неестественникам, нематематикам, а затем помаленьку проникать в круги вне пределов естествознания и математики. Тогда, возможно, начнется такой новый интенсивный, интересный период в развитии гуманитарных научных дисциплин у нас на Земле. Возможно. Но это все в будущем. Бог его знает. Пророчить никогда не следует, потому что можно попасть пальцем в небо, что чаще всего и происходит.

Сейчас, пожалуй, я перейду уже к собственным делам. Одно из трех направлений, по которым развивалась работа в моем отделе в Бухе — это, как я уже говорил, количественное изучение мутационного процесса. А в связи с изучением мутационного процесса попытка создать себе хотя бы самые общие представления о природе генов. Если что-то толковое разузнать о том, как что-то нам неизвестное меняется, то тем самым уже кое-что узнаем об этом неизвестном. Значит, обнаружив кое-какие закономерности в мутационном процессе, можно было высказать уже ряд положений о природе самих генов, изменениями которых являются мутации. Вот та основная идея, которая лежала в основе совместных рассуждений, рассуждений генетиков, биологов, настоящих биохимиков и, главное, физиков-теоретиков.

Я упоминал уже о том, что в моем отделе в Бухе это направление родилось не в виде пузыря на болоте, а явилось логическим развитием одного из направлений, созданных еще в начале века Николаем Константиновичем Кольцовым, моим учителем. Я говорил, что он постарал-

 

- 237 -

ся на основании своих экспериментальных цитологических исследований по изучению влияния определенных физико-химических условий на форму, структуру и движение клеток, а также на основании общих рассуждений о наследственных элементарных факторах, о генах, постарался создать для себя своего рода теоретическую модель того, что представляют собой с физико-химической точки зрения хромосомы и гены, которые расположены линейно, как в то время уже было известно, в этих самых хромосомах.

Мы исходили из кольцовских представлений о том, что все-таки хромосомы должны быть, по определению, чрезвычайно константными, стойкими образованиями, определяющими всю жизнь и особенности клеток и любых совокупностей клеток, то есть тогда уже было ясно, что хромосомы являются основой того, что мы сейчас называем кодом наследственной информации. Кольцов представлял себе поэтому хромосомы в качестве структурных физико-химических образований, гигантских мицелл, вероятнее всего, гигантских молекул каких-то, более или менее автономными частями, структурными подразделениями которых являются гены, линейно расположенные в этих длинных гигантских хромосомах.

Занявшись получением мутаций экспериментально, путем облучения мух дрозофил рентгеновскими лучами, гамма-лучами и другими различными ионизирующими излучениями, мы — я в сотрудничестве с физиками, как теоретиками типа Макса Дельбрюка, так и экспериментальными радиационными физиками вроде моего сотрудника Циммера, и рядом молодых людей, принимавших участие в этой общей, очень большой по размаху и количеству обрабатываемого материала работе,— мы попытались проделать следующее. Варьируя условия облучения, получить такие результаты, из сравнения коих можно было бы умозаключить, какие, в самой общей форме, процессы лежат в основе возникновения мутаций, а значит, что такое мутации. Из физики точно известно, что ионизирующие излучения могут, чего не могут делать, и ежели варьировать их параметры, дозы, же-

 

- 238 -

сткость, то что должно воспоследовать из действия этих ионизирующих излучений. Поэтому в течение ряда лет, пока других путей и возможностей не было, мы сконцентрировали свою работу в этом направлении.

Была проделана большая работа. Как раз в те годы, лет так, вероятно, за десять, пятнадцать, я изучил, в общем, пару миллионов мух и набрал довольно большой материал по прямым и обратным мутациям. Одним из важных, что ли, критериев структуры гена, в самой общей форме, то есть мультимолекулярна ли она или мономолекулярна, является возможность одним и тем же способом, скажем, одним и тем же рентгеновским облучением вызывать мутацию какого-либо гена и его обратную мутацию — из этого мутантного состояния обратно в исходное. Это вещь очень простая. Мы с Мёллером когда-то в каком-то докладе выразились так... кто выдумал, черт его знает, Мёллер или я... Вероятнее, что Мёллер, я был все-таки его моложе и иногда стеснялся так трепануть что-нибудь, а он уже не стеснялся... Так вот, картинно это обозначено таким образом: если бы мутация была просто количественным повреждением гена, ну, кусок гена отбит, то, конечно, нельзя было бы одним и тем же рентгеновским облучением вызвать и прямые и обратные мутации. Так же, как нельзя кулаком разбить окно и чтобы таким же ударом кулака оно опять вскочило на место.

Из сравнения действий разных доз одинаковых лучей и одной и той же дозы разных по жесткости ионизирующих излучений можно опять-таки выяснить довольно точно, является ли тот эффект, который мы наблюдаем, мономолекулярным или мультимолекулярным изменением. Картина получалась, опять-таки, в пользу мономолекулярных изменений. Поэтому к середине 30-х годов мы пришли к некой гипотезе, что мутации, вызываемые облучением, представляют собой, в основном, относительно простые мономолекулярные реакции. А из этого логически следует, что гены сами должны быть своего рода, ежели хотите, простыми физико-химическими единицами.

 

- 239 -

При этом они, конечно, могут быть очень сложными. Простота и сложность — понятия такие довольно неопределенные. «Простые» я в данном случае говорю в том смысле, что они не состоят из комбинаций разных молекул, образующих какое-то вещество сложное: смазь какую-то, деготь, или сливочное масло, или еще что-нибудь. А являются физико-химическими структурными единицами, по-видимому, гигантскими молекулами, или мицеллами, или частями, более или менее автономными, какой-то очень крупной мицеллы, образующей целую хромосому, которую видно в микроскопы. Вот. В общем, складывалась довольно простая картина — простая в том смысле, что она легко поддавалась дальнейшему изучению.

Первая коротенькая сводочка была мною напечатана в 29 году, вторая, значительно более толстая, в 31 году, еще более толстая в 34 году в «Кембриджских философических бюллетенях». А в 35 году мы втроем — я, Циммер и Дельбрюк — в так называемых «Гёттингенских похоронах по первому разряду»... в Гётгингене была знаменитая (и есть до сих пор) Гёттингенская академия естествоиспыта-тельная, которая называется не Akademie, a Gottingen Gesellschaft die Wissenschaft, или иногда, когда им скучно делается, они меняют название на Gesellschaft die Wissenschaft zum Gottingen. Оно издает, это Gesellschaft, такие зеленые тетрадочки, в которых печатаются более или менее длинные, подробные доклады, которые делались в этом самом обществе. Вот мы, все втроем, были приглашены президиумом этого общества сделать доклад, и напечатана была такая зеленая книжечка1. Она до сих пор носит название классической из уважения к нашей точке зрения на механизм мутаций.

Уже потом, после конца войны, было ясно показано, что хромосомы, а следовательно, и сидящие в них гены являются нуклеопротеидами. И тогда целая армия биохимиков, среди которых были и настоящие биохимики, но очень много просто органиков-аналитиков, и некоторое количество физиков бросились на анализ и вьяснение структуры тех нуклеопротеидных образований, которые образуют основу хромосом, а, следовательно, и ген .

 


1 Это — одна из главных работ Н. В. (и его соавторов), она стала широко известна под названием «Зеленая тетрадь» («Grunes Pamphlet») или «Работа трех мужчин» («Drei Menschen Werk»): Timofeev-Ressovsky N.V., Zimmer K.G., Delbruck M. Uber die Nature der Genmutation und der Genstruktur // Nachr. Ges. Wiss. Gottingen, 1935. Ва. 1. № 13. 8. 189-245.

- 240 -

Довольно быстро развивалось дело. Причем главная мыслительная работа была проделана в Англии физиком Криком2, а главная, так сказать, химическая работа была проделана в Америке. В Америке ведь скопился к концу 40-х годов и в 50-е годы весь цвет европейской науки: подрапали, кто мог, еще во время войны, многие после войны. Поэтому начала процветать американская наука, процветает якобы и до сих пор. Ну, собственно, процветают сейчас-то уже остатки большой европейской науки.

Во второй половине 30-х годов переселился в Америку и мой друг и сотрудник Макс Дельбрюк, по происхождению, я вам уже говорил, теоретический физик, а мною был переманен в биологию. Целый ряд американских цитологов и европейских цитологов и биохимиков, обосновавшихся в Америке, попали под его теоретическое влияние, и образовалась такая международная группа. В основе ее в 50-е годы стали три человека — англичанин Крик, американец Уотсон3 и русский физик Гамов4 — сокращенно мы называли их «крик и гам». Потом группа эта росла, росла, начались, значит, действительно замечательные анализы химиков, анализы реальные, анализы структур макромолекул. Сейчас идет с помощью Нобелевских премий эта великолепная, в сущности, органическая аналитика, анализ структур гигантских белковых молекул и нуклеиновых кислот.

Есть все основания полагать, что в предвидимом будущем действительно с достаточной точностью будет выяснена физико-химическая структура кода наследственной информации. Сейчас, конечно, до этого еще далеко. И только аспиранты полагают, что вот уже совершенно построена молекулярная генетика. Молекулярной генетики, в сущности, еще нет. Мои же непосредственные научные, и в особенности экспериментальные, отношения с этой частью генетики, с изучением мутационного процесса, общих принципов структуры генов и хромосом, мои отношения с этим направлением, так сказать, закончены. Я лично с 40-х годов больше этим не занимаюсь. Правда, меня многие, особенно там вот, за рубежом, считают

 


2 Фрэнсис Харри Комптон Крик (р. 1916) — английский физик, работающий в области молекулярной биологии. Основные работы посвящены изучению структуры нуклеиновых кислот. Предложил (совместно с Дж.Д.Уотсоном) модель ДНК — знаменитую «двойную спираль», и объяснил процесс репликации ее молекул при делении клеток. Это — одно из важнейших открытий века — положило начало молекулярной генетике. Член Лондонского королевского общества и многих других научных обществ и академий наук. Нобелевская премия (1962) «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах».

3 Джеймс Дьюи Уотсон (р. 1928) — американский молекулярный биолог. Главная область исследований — синтез белка, структура ДНК и вирусов. Расшифровал структуру ДНК (совместно с Ф. X. К. Криком) — «двойную спираль». Провел классическое исследование бактериальных рибосом и роли РНК в белковом синтезе. Один из инициаторов и руководителей крупнейшего современного международного генетического проекта «Геном человека». Член Национальной АН США и других академий наук. Нобелевская премия в 1962г.

4 Георгий Антонович (Джордж) Гамов (1904—1968) — физик-теоретик. Окончил Ленинградский университет в 1926г. С 1934г. жил в США. Труды по квантовой механике, атомной и ядерной физике, астрофизике, космологии, биологии, истории физики. Первым четко поставил проблему генетического кода. Участник Боровского кружка в Копенгагене. Член Национальной АН США.

- 241 -

чем-то вроде деда этого направления. Потому что новая, послевоенная редакция его была запущена Дельбрюком, а Дельбрюку соответствующую вещь я заправил в мозги в 30-е годы. Вот с этого, в сущности, пошло все, с этой самой нашей классической так называемой «зеленой тетрадочки» Гётгингенского общества наук. Ну и пусть, значит, дальше развивается на доброе здоровье.

 

 
 
 << Предыдущий блок     Следующий блок >>
 
Компьютерная база данных "Воспоминания о ГУЛАГе и их авторы" составлена Музеем и общественным центром "Мир, прогресс, права человека" имени Андрея Сахарова при поддержке Агентства США по международному развитию (USAID), Фонда Джексона (США), Фонда Сахарова (США). Адрес Музея и центра: 105120, г. Москва, Земляной вал, 57/6.Тел.: (495) 623 4115;факс: (495) 917 2653; e-mail: secretary@sakharov-center.ru  https://www.sakharov-center.ru